Improving Estimation Accuracy using Better Similarity Distance in Analogy-based Software Cost Estimation

نویسندگان

  • Xiaoyuan Chu
  • Qin Liu
چکیده

Software cost estimation nowadays plays a more and more important role in practical projects since modern software projects become more and more complex as well as diverse. To help estimate software development cost accurately, this research does a systematic analysis of the similarity distances in analogy-based software cost estimation and based on this, a new non-orthogonal space distance (NoSD) is proposed as a measure of the similarities between real software projects. Different from currently adopted measures like the Euclidean distance and so on, this non-orthogonal space distance not only considers the different features to have different importance for cost estimation, but also assumes project features to have a non-orthogonal dependent relationship which is considered independent to each other in Euclidean distance. Based on such assumptions, NoSD method describes the non-orthogonal angles between feature axes using feature redundancy and it represents the feature weights using feature relevance, where both redundancy and relevance are defined in terms of mutual information. It can better reveal the real dependency relationships between real life software projects based on this non-orthogonal space distance. Also experiments show that it brings a greatest of 13.1% decrease of MMRE and a 12.5% increase of PRED(0.25) on ISBSG R8 dataset, and 7.5% and 20.5% respectively on the Desharnais dataset. Furthermore, to make it better fit the complex data distribution of real life software projects data, this research leverages the particle swarm optimization algorithm for an optimization of the proposed non-orthogonal space distance and proposes a PSO optimized non-orthogonal space distance (PsoNoSD). It brings further improvement in the estimation accuracy. As shown in experiments, compared with the normally used Euclidean distance, PsoNoSD improves the estimation accuracy by 38.73% and 11.59% in terms of MMRE and PRED(0.25) on ISBSG R8 dataset. On the Desharnais dataset, the improvements are 23.38% and 24.94% respectively. In summary, the new methods proposed in this research, which are based on theoretical study as well as systematic experiments, have solved some problems of currently used techniques and they show a great ability of notably improving the software cost estimation accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approach for Software Effort Estimation Using Fuzzy Numbers and Genetic Algorithm to Deal with Uncertainty

One of the most critical tasks during the software development life cycle is that of estimating the effort and time involved in the development of the software product. Estimation may be performed by many ways such as: Expert judgments, Algorithmic effort estimation, Machine learning and Analogy-based estimation. In which Analogy-based software effort estimation is the process of identifying on...

متن کامل

A New Approach to Software Cost Estimation by Improving Genetic Algorithm with Bat Algorithm

Because of the low accuracy of estimation and uncertainty of the techniques used in the past to Software Cost Estimation (SCE), software producers face a high risk in practice with regards to software projects and they often fail in such projects. Thus, SCE as a complex issue in software engineering requires new solutions, and researchers make an effort to make use of Meta-heuristic algorithms ...

متن کامل

A Hybrid Intelligent Model to Increase the Accuracy of COCOMO

Nowadays, effort estimation in software projects is turned to one of the key concerns for project managers. In fact, accurately estimating of essential effort to produce and improve a software product is effective in software projects success or fail, which is considered as a vital factor. Lack of access to satisfying accuracy and little flexibility in existing estimation models have attracted ...

متن کامل

An Approach towards Developing an Efficient Software Cost Estimation System Using Fuzzy and Analogy Methods

––Software development cost estimation is important for effective project management. Many models have been introduced to predict software development cost. In this paper, a novel emotional COnstructive Cost MOdel II (COCOMO II) has been proposed for software cost estimation. In COCOMO II only the project characteristics are considered, whereas the characteristics of team members are also impor...

متن کامل

A New Optimized Hybrid Model Based On COCOMO to Increase the Accuracy of Software Cost Estimation

The literature review shows software development projects often neither meet time deadlines, nor run within the allocated budgets. One common reason can be the inaccurate cost estimation process, although several approaches have been proposed in this field. Recent research studies suggest that in order to increase the accuracy of this process, estimation models have to be revised. The Construct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015